Strategic Plan for Rehabilitation Services

Rehabilitasyon Servisleri için Stratejik Plan

Haim RING
Professor and Chairman, Neurological Rehabilitation Department, Loewenstein Hospital Rehabilitation Center, Raanana, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Chairman, National Rehabilitation Council, Ministry of Health, Israel

Summary

Rehabilitation medicine systems all over the world faced nevertheless difficulties not only on economical grounds but in general, some of them even struggling to survive. In this context it is important to analyze what elements could or should policy makers and leaders of rehabilitation systems consider in order to maintain or even advance their position amidst the health system they live within, looking for a more stable and promising future. Five domains can be defined in research & development, strategic planning and creative thinking in rehabilitation medicine: 1-Measurement of clinical outcomes, 2-Including cost/effectiveness and quality assurance, 3-Services delivery: the continuum of care, 4-Technologies/procedures, 5-Pharmacological treatments, 6-Opportunities (“niches”).

These domains will be described and analyzed vis-à-vis 30 years or personal involvement in this realm. However, each system – regional, national - or even facility should make a selection of what fits their strategic plan best, where whatever has been described can be easily incorporated, where human and material resources exist or can be acquired. The need for the justification of the services looks as a must but all the rest of the items described sub-serve this purpose and should be seriously considered. Above all, is our patients’ quality of life we should strive to improve. Turk J Phys Med Rehab 2007; 53 Suppl 2: 1-5.

Key Words: Rehabilitation services, rehabilitation, physiatry

Özet

Anahtar Kelimeler: Rehabilitasyon servisleri, rehabilitasyon, fiziyatri

Although almost universally recognized as “equal among equals” (1) - a valuable achievement by itself- rehabilitation medicine systems all over the world faced nevertheless difficulties not only on economical grounds but in general (some of them even struggling to survive). In this context it is important to analyze what elements could or should policy makers and leaders of rehabilitation systems consider in order to maintain or even advance their position amidst the health system they live within, looking for a more stable and promising future (2,3). Before proceeding with their description, some basic characteristics of rehabilitation, important for the analysis, are considered:

*Rehabilitation “is the process of helping a person to reach the fullest physical, psychological, social, vocational, avocational and educational potential consistent with his or her physiologic or anatomical impairment, environmental limitations, desires and life plans” (4). Hence, it is a multidimensional, interdisciplinary (5)
(physiatrist as a leader) and deals with chronic conditions along the axis of time. Someone as defined rehabilitation “as a problem solving process” (6).

A physiatrist is a specialist in rehabilitation medicine that has completed a prolonged and complex training program and successfully passed the examinations (7). Far too many people that don’t comply with this definition do “rehabilitation” and this should be one issue of concern for our profession and a standing “for action” item of PM&R professional organization wherever this occurs.

Rehabilitation may take place in different venues: general hospital, acute and sub-acute rehabilitation in-patient facilities, day care or therapy sessions in the rehabilitation facility as out-patient, community based rehabilitation (CBR), including as a variant rehab centers’ outreach facilities (“satellites”) or even home care.

Although quite rare for administrative reasons some integration may take place between different rehabilitation facilities: horizontal on the administrative level, vertical on services delivery, i.e. different facilities joining efforts in different stages of the rehabilitation. Also some regional integration can be made.

Different management plans and contracts exist having as common denominator cost containment: global contracts (with or without utilization review), fee for service, prospective payment system (PPS) and more recently functional-related groups (FRG) and managed care (see further on in the text).

Among the different characteristics of the rehabilitation set-up, the therapeutic conceptual basis is very important (6): it could be “task-oriented”, with a more pragmatic approach, or “theory-based”, with a rather cognitive, impairment oriented rationale. Both approaches have different implications regarding length of treatment and quality of the results or outcome.

Five domains can be defined: Measurement of clinical outcomes, services delivery: the continuum of care, technological procedures, pharmacological treatments, opportunities (“niches”).

Measurement of clinical outcomes

We mean by that the skillful use of valid and reliable scales for function measurement, quality assurance, outcomes, cost benefit analysis, etc. (8-10). This domain helps rehabilitation systems, in fact, justifying their work. The measures can and should be performed in the different known dimensions of the ICIDH-1 (11) namely impairment, disability and handicap or in the terms of the ICIDH-2 (ICF) (12): body function and structure, activity and participation. The Rasch analysis has been of great help in analyzing scales properties, mainly unidimensionality (13-15). The basic measure would be at the beginning of the rehabilitation process and any other point during the process but in any case also at the end of it. The difference between the points can be defined as “effectiveness”, gain or “delta” (16). The gain rate per day obtained by dividing the gain by the length of stay (LOS) is defined as “efficiency” and the ratio between the actual functional improvement and the theoretical one is called “efficacy”. If measured or expressed regardless of the time factor it would be “absolute efficacy” and if considering it, “relative efficacy” (17). The measures can be expressed for a given population such as the department (18) or the entire facility and compared with other similar facilities of the same (19) or different (20) continent. As expressed by Carl Granger (21) “the field of PM&R has the opportunity not simply to be recognized by our medical colleagues, but to take a leadership role in the measurement of clinical outcomes, including cost-effectiveness. New measures for different impairments should be developed (22,23).

This issue is also intimately related to the performance of clinical trials in our realm, more precisely randomized control trials (RCT) defined as “the cornerstone of medical rehabilitation (24). Although difficulties exist (25,26) there also solutions (27,28) and no doubt the use of valid and reliable scales is probably one of the most important of all. Also, of utmost importance is defining the outcomes itself (29-31). Each rehabilitation system should adopt a set of measures, and create a computerized data based with the demographic, clinical and functional data constantly recorded on an electronic data sheet. In this way the publication of a yearly report or simple average figures can be easily performed and also more complex ones such as cost/effectiveness and regression analysis etc, as well. Functional measures are also part of the accreditation process and not less important, of quality assurance (QA) programs. According to DeJong, outcomes should be disclosed as “...secrecy is incompatible with the needs for accountability and transparency and with the demands of evidence-based practice” (32).

Services delivery: the continuum of care

One of the most critical aspects of rehabilitation work deals with the issue of where (place) and for how long (time) the treatment of a patient referred for rehabilitation should be (33). In in-patient rehabilitation it is called length of stay (LOS). One of the classical approaches in our country in the past was, “up to plateau” rehabilitation (i.e. until patients show no visible functional improvement) in-patient treatment. Under this approach, a stroke patient as an example, would typically spend in our facility over three month, completing most of his/her functional tasks and over 90% of them returning home (18). However, insurers all over found expenses of prolonged inpatient rehabilitation too high and started limiting the LOS with the result of patients being discharged with limited independence directly to the community (34,35). This lead to the creation of day hospitals that in our case, shortened the in-patient LOS by one third to less than 60 days and is still decreasing. CBR is growing and developing, with the WHO consistently paying attention to it (36) and scholars rising questions on the evidence-based practices (37) as well ethical issues (38) of CBR in developing countries. The fractionation of the rehabilitation process in different venues and different time of treatment, created concerns regarding the preservation of the quality of care across the different alternatives, hence “the continuity of care” (39,40).

Another alternative is to define set periods of time, mainly in-patient. The FRG approach to determine LOS is a good example of this approach (41) where some parameters of the patient such as motor and cognitive performance and age, would dictate the LOS in in-patient rehabilitation.

An additional way of improving limited periods of time for rehabilitation is adopting systems that would allegedly make then more efficient. For instance the critical/clinical pathways (42-44) approach that dictates what and when different procedures
should be done as from the patient's admission and on. We have proposed an integrative pathway involving different existing alternatives (45) that has some characteristics of the managed care system but is performed under physiatrist conduction and with the patient/family participation (46).

All these is related to additional factors to be taken into consideration: the taxonomy of rehabilitation interventions or as defined by DeJong et al. (47) “The black box of rehabilitation” and risk adjusting both financial and clinical (48,49). No doubt this will improve satisfaction of both insurers and patients (50) and give the rehabilitation system more credibility and trust.

Technologies/procedures

The use of advanced technologies is probably one of the most promising aspects of our work that may bear some solutions to problems affecting rehabilitation systems (45-47,50). Along with solutions some problems may arise and rehabilitation experts should approach this realm positively but cautiously (51-53).

Virtual reality (VR) is a technology where an interactive, computer-generated environment that simulates the real world is created (54,55). It combines two (2D) or three-dimensional (3D) computer graphics with special display techniques giving the participant the feeling of being part of the illusive world. This situation may be used for different rehabilitation situation: sensory-motor training, perception deficits correction, aphasic syndromes treatments, etc. Our first experience was with the “street crossing” specially designed VR program aiming at correcting temporal-spatial deficits in post-stroke neglect syndrome patients (56). Patients, showed significant improvement in attention to left-sided stimuli (cars approaching from the left neglected side) as well as crossing the street.

Functional electrical stimulation (FES) is a non-invasive electrical stimulation technique. Our department has been active in the development and application of the Handmaster device consisting in a hybrid hand neuro-orthosis applied to the patients’ forearm and wrist with stimulating electrodes embedded inside the orthosis (57). Five electrodes, personally adjusted for each patient in the optimal stimulating points over key muscle groups, will stimulate flexor, extensor and thenar eminence muscles.

Simultaneous multi-segment stimulation of additional body segments such as arm and leg can be performed with very promising results both in hand and leg function (58).

A novel wireless radio-frequency (RF) device for lower limb paralysis after central nervous system damage has been developed and tested in our department with very significant improvement in the various parameters of gait and reduction of falls (59).

There is growing evidence that FES treatment induces neural changes in the brain i.e. promotes cortical reorganization with subsequent functional improvement (60).

Transcranial Doppler (TCD) is a technique for measuring cerebral blood flow through “windows” in the skull, of different brain arteries. In our department we have for the first time used the TCD technology to monitor changes in blood flow in the middle cerebral artery in both brain hemispheres simultaneously and correlate it with function as measured with the FIM, NIHSS and other scales, as well with cognitive function, speech, etc. The preliminary findings (61) lend further support to the cumulative knowledge that changes occur in both hemispheres and that TCD measure may help monitoring, treating and even predicting outcome both in general (ADL) as well as specific functions such as language (62).

Robotics in rehabilitation is a novel and highly sophisticated technology with very promising applications in various rehabilitation, neurological as well orthopedic situations (63). This technique may allow for open label of pre-programmed (“menu”) training programs that can be passive, active-assisted or active, for upper or lower limb training, uni or bi-lateral. The results of each session can be computer registered and stored for “off-line” analysis and re-consideration of the therapeutic strategy to be applied in each patient individually (64).

Constraint induced movement therapy (CIMT) CIMT or “force use” is a simple –“low tech”- method of treatment of the paralytic limb, mostly the upper limb, based on the assumption that in patients with some potential for function, the “learned non-use” phenomena plays a role (65). The CIMT literally forces the patient to use the paralytic hand, improving function. The sound, non-paralytic, limb is placed in a mitt or sling restricting his/her movements and the affected upper limb is then forced to act for several hours a day on either specific or general everyday tasks.

Physiatrists and allied medical professions alike, to be prepared to understand, skillfully help patients adjust to these innovative technologies, as well be part of its research and development (66). Not less important to influence decision-makers on the incorporation of these technologies in the “basket of services” offered to the disabled people and rehabilitation systems.

One open question by now is the place of “complementary medicine” in the realm of rehabilitation (67,68). So far, the ideas are contradictory but it looks as some techniques such as acupuncture (69,70) are slowly gaining their place in rehabilitation.

Pharmacological treatments

New perspectives, however, are opened with the possible or practical use of drugs for specific “sui generis” situations in rehabilitation. No doubt the most significant advance in this regard has been the introduction of the botulinum toxin A for clinical use mainly in situations of spasticity (71,72) but also in focal dystonia, blepharospasm, torticollis and other well defined clinical situations. Additional experimental drugs have been for cognitive impairment (memory, etc.) with doubtful results and psychotropics for TBI patients’ behavior disturbances. One promising item in this field is that of drug-driven neuromodulation. It is hoped that the administration of certain drugs such as d-amphetamines or l-dopa, along with traditional (PT, OT, etc.), semi- (CIMT) or advanced technological (FES, VR, robotic) treatments will induce neural changes in the damaged brain conducting to speech (73) motor (74,75), and other improvements based in the proven capacity of the brain to generate or undergo plastic changes underlying improvements in functions (76).

Breakthroughs?

Brain stem cells or other cells (Schwann, fibrocytes) implants (77-79) are in theory very promising for certain conditions - TBI, spinal cord injury, Parkinson, stroke, etc. - the results, for the time being, meager. No doubt more efforts should be invested and combined with other techniques presented above.
Opportunities ("niches")

By these terms we understand situations where rehabilitation specialists and their team and/or facilities may have an advantage over other professions or facilities that create and opportunity for developing services improving both their income and image at the same time. As they might be the only ones able to do these or to doing it better, it can be a kind of "niche".

These can be: Musculoskeletal clinics/programs, myofascial pain, fibromyalgia, chronic pain, arthritic conditions, hand rehabilitation clinic, cancer rehabilitation (80,81), Respiratory rehabilitation, organ-transplant rehabilitation (82), multiple sclerosis (MS) clinic, primary care for the disabled (83), wellness promotion centers (sport+leisure), long term care for comatose patients, disability evaluations (large volumes), medico-legal opinions for corporations, large firms, etc., assessment of driving skills in the disabled (brain main), occupational ergonomics (prevention), technology for disabled people (information center), R&D joint ventures with industry in technologies in disability, tele-rehabilitation, educational activities and publications.

Summary

We have presented the domains we believe are of utmost importance for a thinking process around how to improve the rehabilitation system situation, if necessary. Each system -regional, national- or even facility should make a selection of what fits their strategic plan where whatever has been described can be easily incorporated, where human and material resources exist or can be acquired. The need for the justification of the services looks as a must but all the rest of the items described sub-serve this purpose and should be seriously considered. Above all, is our patients' quality of life we should strive to improve (84-86).

References

64. Ring H, Treger I, Faran S. Robot-assisted therapy of neuromuscular training of sub-acute stroke patients: a feasibility study (Submitted).